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A recently developed protocol for pulsed gradient spin echo (PGSE) NMR is applied for the size determi-
nation of multilamellar vesicles (MLVs). By monitoring the self-diffusion behavior of water, the technique
yields an estimate of the homogeneous length scale khom, i.e. the maximum length scale at which there is
local structural heterogeneity in a globally homogeneous material. A cross-over between local non-
Gaussian to global Gaussian diffusion is observed by varying the experimentally defined length- and
time-scales. Occasional observation of a weak Bragg peak in the PGSE signal attenuation curves permits
the direct estimation of the MLV radius in favorable cases, thus yielding the constant of proportionality
between khom and radius. The microstructural origin of the Bragg peak is verified through Brownian
dynamics simulations and a theoretical analysis based on the center-of-mass diffusion propagator. khom

is decreasing with increasing shear rate in agreement with theoretical expectations and results from 2H
NMR lineshape analysis.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Multilamellar vesicles, MLVs, also known as onions, spherulites
or liposomes, can be formed when shear is applied to a lamellar
phase. When using steady shear at a constant rate the MLVs are
fairly monodisperse in size and their radius can be controlled by
the applied shear rate [1–3]. Since the first reports on such mono-
disperse shear-induced MLVs they have been found in many other
lamellar systems [4–13]. Generally, the vesicle radius decreases
with the shear rate; it is often approximately proportional to the
square root of the inverse rate [2,14]. Sometimes the polydispersity
of the MLV size is so low that periodic structures are formed
[13,15–18]. However, the simple picture of densely packed spheres
is misleading since there are no solvent-filled voids in the system;
electron microscopy has shown that space is completely filled by
the lamellar phase and that the onions have polyhedral shape
[19]. Therefore, the onion structure is better characterized as a de-
fect structure of the lamellar phase with a topology similar to that
of a foam. A schematic picture is shown in Fig. 1.

Shear-induced MLVs can be metastable for a long time and the
closed-shell structure of the bilayers allows for both hydrophilic
ll rights reserved.
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and hydrophobic molecules to be trapped in the onions. Hence
they may be useful, for instance, as carrier systems for drugs
[20]. In addition, there is also a fundamental interest directed to-
wards a physical understanding of the processes of onion forma-
tion and destruction and the elucidation of any intermediate
structures during these processes [10,13,14,21–27].

One technique that can be used to investigate shear-induced
structural changes of the lamellar phase is measurements of diffu-
sion by NMR. Using flow-compensated multi-echo pulsed gradient
NMR Lutti and Callaghan measured the diffusion spectra of lamel-
lar samples under shear [28–32]. Based on models of the phase
structure they could fit the experimental diffusion spectra and ob-
tain structural parameters such as the onion dimensions at various
shear rates [30].

Pulsed-gradient-spin-echo (PGSE) NMR is a well-established
technique for studying structure and molecular transport in
microheterogeneous systems in general [33–35]. The NMR signal
is encoded for molecular displacements using pairs of magnetic
field gradient pulses. The time and length scales, and also the
direction in which motion is monitored, can be adjusted by vary-
ing the properties of the gradient pulse pair. Typically, molecular
motion is studied on the 1 � 1000 ms time scale and the 1–
100 lm length scale. For bulk liquids the gradual spreading out
of molecules from their starting position obeys Gaussian statis-
tics and can be characterized with the bulk self-diffusion coeffi-
cient D0. The low solubility of water in the hydrocarbon
domains in a lamellar phase renders the water diffusion highly
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Fig. 1. Schematic two-dimensional (2D) picture of shear-induced surfactant
multilamellar vesicles (MLVs), showing the ideal polyhedral arrangement of
monodisperse MLVs. The lines indicate the surfactant bilayers, offering resistance
to water diffusion due to the low solubility of water in a hydrocarbon phase. The
magnification shows a schematic picture of the bilayers where light gray symbol-
izes the tail of the surfactant, dark gray areas symbolizes the heads and the white
parts are the water areas in between the stacked bilayers. RMLV is the MLV radius
and d is the repeating distance of the bilayer stack.
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Fig. 2. Trajectory x(t) for a random walker projected onto one dimension (top) and
gradient temporal profile f(t) of the PGSE NMR experiment according to Eq. (5)
(bottom). Dots in the top panel indicate the positions x(t) of the walker at the time
points t = 0, d, D, and D + d. Solid lines in the top panel show the trajectory center-
of-mass (COM) x0(t1, t2) in the time intervals (t1, t2) = (0,d) and (D,D + d), see Eq. (8).
The COM displacement X0(D,d), defined in Eq. (11), is indicated with a double arrow.

292 I. Åslund et al. / Journal of Magnetic Resonance 209 (2011) 291–299
anisotropic; the ratio between the diffusivities perpendicular to
and parallel with the lamellar director is usually above 10 [36].
For a macroscopically aligned lamellar phase the experimentally
observed diffusion coefficient depends on the angle between the
lamellar director and the magnetic field gradient. Considering the
schematic picture of the MLVs in Fig. 1, it is clear that the out-
come of the PGSE NMR experiment will depend strongly on the
scales of observation. When motion is followed on a length scale
smaller than the onion radius RMLV, a broad distribution of diffu-
sion coefficients will be observed since each lamellar orientation
with respect to the field gradient gives rise to a separate diffu-
sion coefficient. At very long scales of observation, the molecules
will sample all lamellar orientations and the effect of the local
anisotropy is averaged, yielding an effective diffusion coefficient
D1 describing the long-range diffusion in the globally isotropic
medium. In a previous publication [37] some of us have de-
scribed an experimental protocol for determining the length
scale at which there is a cross-over from locally anisotropic to
globally isotropic diffusion. This length scale is denoted the
homogeneous length scale khom in analogy with the parameter
used to characterize microstructural heterogeneity through im-
age analysis [38]. The concept of khom can also be compared to
the representative elementary volume (REV) used in the field of
porous materials as the smallest volume in which the locally
evaluated properties, e.g. porosity, are the same as the global
ones [39]. The linear extension of the REV can be identified as
khom.

In this contribution, we demonstrate that khom, which is ob-
tained as a model-free parameter from a set of PGSE attenuation
curves, can be used as a measure for the structural length scale
of shear-induced MLVs. This is exemplified by a well-studied mod-
el system, the 40 wt% aqueous solution of the nonionic surfactant
C10E3 [21,23,24,26,27,40–43]. Complementary characterization of
the system is carried out with 2H NMR [43]. PGSE NMR applied
to MLV systems is explored in some detail, both with Brownian
dynamics simulations and from a theoretical perspective. While
the basic theory for PGSE NMR can be found in several textbooks
and reviews, e.g. Refs. [33–35,44], we here derive the theory in a
somewhat unconventional way based on the work of Mitra and
Halperin [45], the reason being that the experimental observations
for MLV systems can be conveniently explained using their con-
cepts of the center-of-mass (COM) density and COM diffusion
propagator as replacements for the more commonly used spin den-
sity and diffusion propagator.
2. Theoretical considerations

2.1. PGSE signal and center-of-mass displacements

A time-varying magnetic field gradient g(t) imparts a temporal
and spatial dependence to the NMR precession frequency x(r, t)
according to

xðr; tÞ ¼ �cgðtÞ � r; ð1Þ

where c is the magnetogyric ratio (2.675�108 rad/Ts for 1H) and r is
the position. Consider a nuclear spin performing a random walk
r(t) in the time interval from t = 0 to t = s. The time-dependent
phase /(t) is at t = s given by

/ðsÞ ¼
Z s

0
xðtÞdt ¼ �c

Z s

0
gðtÞ � rðtÞdt ð2Þ

if /(0) = 0. The NMR signal E(t) results from the ensemble average

EðtÞ ¼ hei/ðtÞi: ð3Þ

In the pulsed gradient spin echo (PGSE) experiment, the NMR signal
is encoded for molecular displacements employing two magnetic
field gradient pulses of equal amplitude and direction, but opposite
effective polarity. We can in Eq. (2) separate the gradient temporal
profile f(t) and the gradient vector g, thus making the substitution
g(t) ? gf(t), yielding

/ðsÞ ¼ �cg �
Z s

0
f ðtÞrðtÞdt: ð4Þ

With pulse duration d and separation D between the onset of the
pulses, f(t) is given by

f ðtÞ ¼ �HðtÞ þ Hðt � dÞ þ Hðt � DÞ � Hðt � D� dÞ; ð5Þ

as shown in Fig. 2. In Eq. (5), H(t) is the Heaviside step function.
Insertion of Eq. (5) into Eq. (4) yields

/ðDþ dÞ ¼ �cg � �
Z d

0
rðtÞdt þ

Z Dþd

D
rðtÞdt

� �
; ð6Þ

which can be rearranged to

/ðDþ dÞ ¼ �cgd � 1
d

Z Dþd

D
rðtÞdt � 1

d

Z d

0
rðtÞdt

� �
: ð7Þ

Defining r0(t1, t2) as the center-of-mass (COM) of the random walk
r(t) in the time interval t1 < t < t2 according to
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r0ðt1; t2Þ ¼
1

jt2 � t1j

Z t2

t1

rðtÞdt ð8Þ

and the wave vector q as

q ¼ cgd
2p

; ð9Þ

Eq. (7) can be written as

/ðDþ dÞ ¼ �2pq � r0ðD;Dþ dÞ � r0ð0; dÞ½ �: ð10Þ

Let R0(D,d) denote the COM displacement, i.e. the distance between
the COMs of r(t) in the intervals D < t < D + d and 0 < t < d,

R0ðD; dÞ ¼ r0ðD;Dþ dÞ � r0ð0; dÞ: ð11Þ

A one-dimensional trajectory, with COM positions and displace-
ment indicated, is displayed in Fig. 2.

Combining Eqs. (3), (10) and (11) yields

EðDþ dÞ ¼ he�i2pq�R0 ðD;dÞi ð12Þ

for the signal in the end of the PGSE experiment, t = D + d. In order
to calculate the PGSE signal using Eq. (12), we need the probability
distribution of R0. Let us denote this quantity as the ‘‘COM displace-
ment probability’’, P0ðR;D; dÞ. Now writing the PGSE signal as a func-
tion of q, D, and d, Eq. (12) can be expressed as

Eðq;D; dÞ ¼
Z

P0ðR;D; dÞe�i2pq�RdR: ð13Þ

Eq. (13) can be recognized as a Fourier transform with the conjugate
variables q and R.

2.2. Free diffusion

For diffusion with the self-diffusion coefficient D in an isotropic
and homogeneous medium, both P0ðR;D; dÞ and E(q,D,d) are
Gaussian:

P0ðR;D; dÞ ¼ ½4p2DðD� d=3Þ��3=2e�R�R=4DðD�d=3Þ ð14Þ

Eðq;D; dÞ ¼ e�4p2q�qDðD�d=3Þ ð15Þ

The factor (D � d/3) in Eqs. (14) and (15) can be used to define an
effective diffusion time td through

td ¼ D� d=3: ð16Þ
2.3. Closed pores

The diffusion propagator P(r0jr,s), i.e. the probability density for
spin displacement from r0 to r over the time interval s, is often
used to describe diffusion in a pore space. Apart from the case of
free diffusion, analytical expressions for P(r0jr,s) are known only
for simple closed geometries such as cylinders and spheres [46–
49]. The probability distribution of displacements R = r � r0, the
‘‘average propagator’’ PðR; sÞ, is given by integration over all start-
ing positions, weighted with local spin density q(r0), according to

PðR; sÞ ¼
Z

qðr0ÞPðr0jr0 þ R; sÞdr0: ð17Þ

When the PGSE experiment is performed in the limit as d ? 0, then
PðR;DÞ can replace P0ðR;D; dÞ in Eq. (13). For spins diffusing in a
closed pore space, P(r0jr,s) becomes independent of r0 in the limit
s ?1; the spin ‘‘loses memory’’ of its initial position. In this case
P(r0jr,s) = q(r), and PðR;1Þ is the autocorrelation function of q(r)
which we denote ~qðRÞ:

PðR;1Þ ¼
Z

qðrÞqðrþ RÞdr ¼ ~qðRÞ: ð18Þ
Let us define a COM propagator P0(r0jr,s), being the probability den-
sity for a spin starting at r0 having the COM position r0 = r over the
time interval s. Averaging over all starting positions yields the COM
density q0(r,s)according to

q0ðr; sÞ ¼
Z

qðr0ÞP0ðr0jr; sÞdr0: ð19Þ

In analogy with Eq. (18), P0ðR;D; dÞ is in the limit D ?1 given by
[45]

P0ðR;1; dÞ ¼
Z

q0ðr; dÞq0ðrþ R; dÞdr ¼ ~q0ðR; dÞ ð20Þ

for closed pores. E(q,1,d) is the Fourier transform of P0ðR;1; dÞ,
which is the autocorrelation function of q0(r,d). Then, according to
the Wiener-Khinchin theorem, E(q,1,d) is the power spectral den-
sity of q0(r,d):

Eðq;1; dÞ ¼ jS0ðq; dÞj2; ð21Þ

where S0(q,d) denotes the Fourier transform of q0(r,d). To summa-
rize, Eq. (21) states that the PGSE signal E(q,1,d) is the ’’diffraction
pattern’’ of the COM density q0(r,d), which is equal to the true spin
density q(r) in the limit d ? 0.

2.4. Microheterogeneous medium

Now consider a microscopically heterogeneous, but macroscop-
ically isotropic and homogeneous, material with local spin density
q(r) and local diffusion tensor D(r), e.g. the MLV system of interest
here. All variations of q(r) and D(r) occur on a length scale smaller
than the homogeneous length scale khom. In the limit D ?1, such
that the typical displacement during D is much larger than khom,
we expect P0ðR;D; dÞ to be Gaussian, with a width given by an effec-
tive, long-range self-diffusion coefficient D1, modulated by ~q0ðR; dÞ
[45]:

P0ðR;D; dÞ ¼ ~q0ðR; dÞ½4pD1ðD� d=3Þ��3=2e�R�R=4D1ðD�d=3Þ ð22Þ

Note that the factor originating from the COM density is a function
of d, while the Gaussian envelope depends on td = D � d/3. Changing
d at constant td leads to a modulation of P0ðR;D; dÞ on a length scale
smaller than khom, while preserving the overall Gaussian shape.

Fourier transform of Eq. (22) yields

Eðq;D; dÞ ¼ jS0ðq; dÞj2 � e�4p2q�qD1ðD�d=3Þ; ð23Þ

where � denotes a convolution. Variation of P0ðR;D; dÞ on length
scales smaller than khom for constant overall shape corresponds to
a variation of E(q,D,d) at values of q larger than 1/khom. As sug-
gested and demonstrated in a previous publication [37], and further
demonstrated with Brownian dynamics simulations below, the
smallest value of q for which E is changing when varying d at con-
stant D � d/3 can be used to estimate khom.

In cases where the displacement probability and PGSE signal
depend on td rather than D, it is more convenient to write them
as functions of td and d. Such notation will be used for the remain-
der of this paper.

3. Brownian dynamics simulations

3.1. Simulation details

A two-dimensional model of the MLV phase is shown in Fig. 3.
The unit cell of the periodic structure is a single MLV, which con-
sists of a central core, a middle layer, and an outer layer. A square
lattice, with distance dx between adjacent lattice points, defines
the allowed positions of the random walkers. The distance be-
tween the centers of neighboring MLVs is 2RMLV = 5dx. For each
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Fig. 3. Two-dimensional ‘‘square onion’’ geometry used in the simulation of
displacement probabilities and PGSE signal. The square grid of black points with
separation dx shows the allowed positions of the random walkers in the x,y-plane.
Blue lines indicate the MLV layers. The centers of adjacent MLVs are separated by a
distance 2RMLV = 5dx. The geometry is periodic and extends indefinitely in the x and
y directions.
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Fig. 4. Simulated propagator P(r0jr,s), COM propagator P0(r0jr,s), and COM density
q0(r,s) for the ‘‘2D square onion’’ geometry (see Fig. 3) as a function of position
r = (x,y) and time s (given in units of the simulation time step dt). Blue lines show
the MLV layers and the red square indicates the initial position r0 of the random
walkers when simulating P(r0jr,s) and P0(r0jr,s). Data is shown for three levels of
anisotropy: (a) high anisotropy, P\ = 0 and Pk = 0.25, (b) low anisotropy, P\ = 0.016
and Pk = 0.234, (c) isotropic, P\ = Pk = 0.125, where P?=k is the probability of taking a
step across/along an MLV layer boundary for each time step. The grayscale is linear
between zero (black) and the maximum value (white), being rescaled for each sub-
figure. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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time step dt, a random number determines if the walker takes a
step to one of the four nearest neighboring lattice points, or stays
at the starting point. A jump between lattice points within the
same layer occurs with the probability Pk, while a step across layer
boundaries has the probability P\. The jump probabilities are re-
lated to the diffusion coefficients parallel and perpendicular to
the layers, Dk and D\, via Dk=? ¼ Pk=?dx2=dt. A total of 2.5 � 105

walkers were released at the 25 lattice points in the central unit
cell, and their trajectories r(t) during 104 time steps were stored
for further analysis. The propagator P(r0jr,s), the COM propagator
P0(r0jr,s), and the COM displacement probability P0ðR; td; dÞ were
evaluated by first calculating the COM positions r0 and displace-
ments R0 with Eqs. (8) and (11), and then constructing two-
dimensional histograms using the lattice points as centers of the
bins. The COM density q0(r,s) was calculated with Eq. (19) and
the PGSE signal E(q, td,d) was evaluated using Eq. (12) for 256
geometrically spaced q-values. Values of d and td are reported in
the figure captions.

The simulations were implemented in MATLAB R2009b on a
Mac with double 2.26 GHz Quad-Core Intel Xeon processors, 6 GB
RAM, and 64-bit operating system. With the simulations running
in the background on a single processor core, the entire set of data
presented here required about one hour of CPU time.

3.2. Probability distributions

In Fig. 4 simulated P(r0jr,s), P0(r0jr,s), and COM density q0(r,s)
are displayed. A system where the walkers cannot cross the bound-
aries between the layers (P\ = 0 and Pk = 0.25) is shown in Fig. 4a.
In the top row, P(r0jr,s) illustrates the gradual spreading of the
walkers from the starting position r0 (labeled with a red box) to
an even distribution in the outer layer of the central MLV at long s.

While P(r0jr,s) shows where the walkers are at the instant t = s,
P0(r0jr,s), in the second row of Fig. 4a, shows the COMs of the paths
taken by the walkers in the time interval 0 < t < s. P0(r0jr,s) is a d-
function at r0 for small s, spreads out and moves toward the center
of the MLV with increasing s, and finally becomes a d-function in
the center of the MLV for long s. At such long s, each random walk-
er starting at r0 has explored the entire outer layer repeatedly, thus
having a COM of the trajectory in the very middle of the MLV. The
spin phase / acquired during the first gradient pulse of the PGSE
experiment is a label of the COM of the path during the application
of the pulse. As illustrated with P(r0jr,s) and P0(r0jr,s) at long s, the
spins starting in the outer layer of the MLV will acquire a phase la-
bel characteristic for the MLV center, although not a single one of
them has actually been there.

The bottom row in Fig. 4a shows q0(r,s), which equals P0(r0jr,s)
averaged over all starting positions according to Eq. (19). The
importance of q0(r,s) lies in the straightforward relation between
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Fig. 5. Simulation results for the ‘‘2D square onion’’ geometry in Fig. 3 with
P\ = 0.016 and Pk = 0.234. (a) COM density q0(x,d) vs. position x for the gradient
pulse lengths d = 10 (blue) and 100 (red). (b) COM displacement probability
P0ðX; td; dÞ vs. displacement X for d = 10 (blue) and 100 (red), and effective diffusion
times td ¼ D� d=3 ¼ 114 2

3 (dashed) and 349 2
3 (solid). (c) PGSE signal E(q, td,d) vs

wave vector q for d = 10 (blue) and 100 (red), and td ¼ 114 2
3 (dashed) and 349 2

3
(solid). The vertical line and arrow indicate the homogeneous length scale khom and
the MLV center-to-center distance 2RMLV, respectively. The times are reported in
units of the simulation time step dt. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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its Fourier transform and the PGSE signal, see Eqs. (21) and (23).
With increasing s, q0(r,s) changes from being independent of r to
a set of d-functions at the MLV centers. Since the Fourier transform
of a periodic set of d-functions in real space is another set of
d-functions in reciprocal space, these results show that the PGSE
signal may display Bragg peaks related to the distance between
MLV centers. It is worth emphasizing that the periodicity of the
COM density q0(r,s) originates from the periodicity of the local dif-
fusion tensor D(r) while the true spin density q(r) is homogeneous.

Results from a system with finite permeability across the layer
boundaries (P\ = 0.016 and Pk = 0.234) are shown in Fig. 4b. Also in
this case P(r0jr,s) initially spreads along the outer layer in which r0

is located, but at later times moves into the inner layers and adja-
cent MLVs. At even longer s, P(r0jr,s) assumes an overall Gaussian
shape. Since P(r0jr,s) initially follows the MLV layers, P0(r0jr,s)
moves towards the MLV center, although the effect is not as pro-
nounced as for the P\ = 0 case. At long s, P0(r0jr,s) extends far be-
yond the limits of the MLV in which r0 is located. Hence, uniform
q0(r,s) are obtained in both the short- and long-s limits. Maximally
peaked q0(r,s) at the MLV centers are obtained for intermediate
values of s.

As a reference, results from an isotropic system (P\ = Pk = 0.125)
are displayed in Fig. 4c. Both P(r0jr,s) and P0(r0jr,s) are Gaussian
having widths increasing with s. Since the medium is homoge-
neous with respect to both D(r) and q(r), q0(r,s) remains constant
irrespective of the value of s.

3.3. PGSE signal

Fig. 5 shows simulated q0(x,d), P0ðX; td; dÞ, and E(q, td,d) for a
system with P\ = 0.016 and Pk = 0.234. q0(x,d) equals the projection
of q0(r,s) in Fig. 4b onto the x-axis. Increasing d from 10dt (blue)
to 100dt (red) leads to sharper peaks at the MLV centers,
x/2RMLV = 0, ± 1, ± 2,. . .. According to Eq. (22), P0ðX; td; dÞ in Fig. 5b
equals the autocorrelation function of q0(r,s) weighted with a
Gaussian corresponding to the long-range diffusion. Increasing d
from 10dt (blue) to 100dt (red) at constant td = D � d/3, either
114 2

3dt (dashed) or 349 2
3dt (solid), leads to a small-scale modula-

tion of P0ðX; t d; dÞ while preserving the Gaussian envelope, the
width of which is proportional to t1=2

d .
The modulation of P0ðX; td; dÞ is even more visible in its Fourier

transform, E(q, td,d) in Fig. 5c. The q-range can be divided into two
regions with respect to the effect of varying d at constant td. At low
q, E(q, td,d) is decaying faster for longer td, but is independent of d
as expected for a homogeneous medium, see Eq. (15). An apparent
diffusion coefficient D(td,d) can be estimated by fitting Eq. (15) to
the low-q part of the data [37]. With increasing td and d, D(td,d) ap-
proaches the long-time value D1. The variation of E(q, td,d) at high
q corresponds to the small-scale modulation of P0ðX; td; dÞ. The bor-
der between the two regions of q, indicated with the vertical line in
Fig. 5c, defines the homogeneous length scale khom, i.e. the smallest
length scale at which the material appears homogeneous. A
numerical estimate of khom is obtained by evaluating the ratio be-
tween the highest and lowest values of E(q, td,d) when varying d at
constant td and q. The largest value of q for which this ratio is be-
low a certain threshold is taken as the inverse of khom [37]. Here we
have chosen to use a threshold value of 1.1. Increasing the thresh-
old value makes the analysis more robust with respect to the influ-
ence of experimental noise at the expense of inducing systematic
deviations.

The Bragg peak in E(q, td,d) at q�2RMLV = 1 for d = 100dt and
td ¼ 349 2

3dt (red, solid), shown with the arrow in Fig. 5c, corre-
sponds to the set of local maxima of P0ðX; td; dÞ at X/2RMLV = 0, ±1,
±2, . . ., originating from the local maxima of q0(x,d) at x/2RMLV = 0,
±1, ±2, . . .. The amplitude of the Bragg peak can be maximized by
choosing an optimum value of d for which the maxima of q0(r,d),
as shown in Fig. 4b, are as sharp as possible. For the Bragg peak
to be visible, td has to be long enough for the envelope of
P0ðX; td; dÞ to cover a range of at least a few RMLV. Thus, for favorable
choices of d and td the MLV radius RMLV can be directly deduced
from the position of the Bragg peak.

To summarize, small-scale heterogeneity of the local spin den-
sity q(r) and/or the local diffusion tensor D(r), both being struc-
tural properties of the material, gives rise to small-scale
modulation of the COM spin density q0(r,d) and, consequently,



(a)
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the COM displacement probability P0ðR; td; dÞ when varying d. In
the PGSE experiment, the small-scale modulation of P0ðR; td; dÞ is
detected as a variation of E(q, td,d) at high q. From the maximum
value of q for which E(q, td,d) is independent of d, the homogeneous
length scale khom can be inferred.
(b)

(c)

Fig. 6. Experimental PGSE signal E(q, td,d) vs wave vector q for water in MLVs
formed at the shear rates (a) 15, (b) 10, and (c) 5 s�1, using the timing variables d = 1
(dashed), 4.5 (solid), 20 ms (dash-dotted), and td = 40 (circles) and 118 ms
(squares). The vertical lines indicate the homogeneous length scale khom evaluated
with a 1.1 threshold for the variation of E(q, td,d) with d. The arrow in (b) shows a
Bragg peak related to the MLV center-to-center distance 2RMLV.
4. Materials and methods

4.1. Materials

Tri-ethylene glycol mono n-decyl ether (C10E3) with a purity
higher than 99.8% was purchased from Nikko Chemical Co. (Tokyo,
Japan). Deuterium oxide (D2O) was obtained from Sigma Chemicals
(Steinheim, Germany). Samples containing 40 wt% surfactant were
prepared by weighing the desired amounts of surfactant and water
into vials, mixing them in a vortex mixer and centrifuging them in
order to remove air bubbles. All samples were prepared with D2O
as a probe for deuterium NMR spectroscopy. The residual protons
in D2O together with protons originating from the hydroxy group
of the surfactant resulted in a signal sufficient for 1H diffusion mea-
surements as well. The samples were sheared in a Physica UDS 200
rheometer using the cone-and-plate geometry (MK22/M, 1� cone
angle). The instrument is equipped with a temperature control unit
that was calibrated to give a temperature in the sample chamber
within 0.1 �C of the set value. A solvent trap was used to prevent
water evaporation. MLVs were generated by applying a constant
shear rate until reaching a steady state in viscosity. Then, the
shear-induced MLVs were gently transferred to a 5 mm NMR tube
with the help of a syringe. The mechanical stress imposed during
this procedure is not high enough to destroy the MLVs and they
maintain their integrity as confirmed by 2H NMR. It should be
noted, however, that the ’relaxed’ MLV structure observed for our
samples at rest might differ slightly from the MLV structure under
shear, but a difference in the size of the MLVs is not expected. The
structure under shear could be investigated using a rheo-NMR
probe as in the investigations reported by Lutti and Callaghan
[28–32].

The same sample was used for both 2H spectroscopy and 1H dif-
fusometry. The two experiments were carried out immediately
after each other to avoid sample changes.

4.2. NMR experiments

2H NMR spectra were recorded at a magnetic field of 2.3 T on a
Bruker DMX100 spectrometer operating at a 2H resonance fre-
quency of 15.35 MHz. Spectra were obtained by Fourier transfor-
mation of the signal following a single 90�-pulse of 10.5 ls. The
temperature of the sample, which was controlled using an air-flow
system, was set to 25 �C.

NMR diffusometry measurements were performed at 25 �C on a
Bruker AVII-200 spectrometer operating at a resonance frequency
of 200.13 MHz for 1H. Gradient pulses with a maximum strength
of 9.6 Tm�1 were generated by a Bruker DIFF-25 gradient probe
controlled by a Great Master Unit. The water 1H signal was re-
corded with a stimulated echo sequence [50] for an array of
q-, td-, and d-values as reported in Fig. 6. For each value of d, the
gradient strength was adjusted to yield the same range of q. The
accuracy of this procedure was tested as described in Ref. [51].
5. Results and discussion

In the following we first present the results from 2H NMR spec-
troscopy, yielding independent estimates of the MLV size. Subse-
quently we move on to the PGSE NMR results, first focusing on
the long-range diffusion coefficient D1, and then the determina-
tion of the homogeneous length scale khom. Finally, we compare
our results with various estimates of the MLV size found in the
literature.

5.1. 2H NMR spectroscopy

The 2H NMR technique probes the motionally averaged electric
quadrupole couplings between the deuterium nuclei (spin I = 1)
and the electric field gradients at the sites of the observed nuclei
[52].

When the D2O molecules experience a macroscopically aniso-
tropic environment the quadrupolar interaction has a non-zero
average, generating a splitting of the signal into two peaks. In the



Fig. 7. Illustration of the parameters used in the cell-model approach for calculat-
ing the long-time diffusion coefficient D1. A region 1, with concentration C1 and
local diffusion coefficient D1, is enclosed in an outer medium 2, with concentration
C2 and diffusion coefficient D2.
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case of uniaxial symmetry, as is the case for the La phase, the 2H
spectrum consists of a doublet with a frequency separation Dm gi-
ven by [53]

Dm ¼ 3
4

dQ ð3 cos2 h� 1Þ; ð24Þ

where h is the angle between the director (the symmetry axis of the
phase) and the magnetic field, dQ ¼ e2�qQ=h is the motionally aver-
aged quadrupole coupling constant, e is the elementary charge, e�q is
the largest principal value of the electric field gradient, Q is the nu-
clear quadropole moment and h is Planck’s constant. According to
Eq. (24), the deuterium NMR line shape depends on the distribution
of director orientations. A disordered lamellar phase consisting of
many domains of extended flat layers whose orientations are iso-
tropically distributed in space gives rise to the characteristic line
shape of a polycrystalline sample also known as powder or Pake
pattern [54].

As long as the lamellae are planar the diffusive motion of the
probe molecule D2O has no extra rotational component besides
the anisotropic local tumbling and the characteristic quadrupole
coupling of the La phase is entirely given by the motional averaging
caused by the local, ansiotropic motion. However, when the layers
are curved, the preferred diffusion parallel to the layers is con-
nected to a rotation and therefore leads to an additional motional
narrowing of the spectrum. This results in a decrease and eventu-
ally a collapse of the quadrupolar splitting. Observing the transfor-
mation of the deuterium NMR line shape from a quadrupole
doublet to a single peak can be used to monitor the formation of
shear-induced MLVs in situ [14,26,55].

In this work shear was applied before the sample is filled into the
NMR tube, and measurement of the 2H NMR line shape is used as a
means to monitor the morphology of the lamellar phase, on which
the diffusion experiments are performed. A broad single deuterium
line from the D2O is observed for the three shear rates used in this
study, confirming that the shear-induced MLVs have remained in-
tact during the transfer to the NMR tubes. The line widths decrease
with increasing shear rate, reflecting the shear-rate dependency of
the vesicle radius: the vesicles become smaller when the shear rate
is increased and smaller vesicles lead to narrower NMR bands [43].
In order to predict the vesicle radius from the spectra, one requires
a model for the 2H relaxation. Such a model was presented in Ref.
[43]. This model assumes that the exchange of water between adja-
cent shells in an MLV is negligibly slow and that the vesicles are
small enough for the NMR spectrum to be in the regime of isotropic
motional narrowing. Each shell then yields a Lorentzian line whose
width depends on the shell radii. Using this model on the present
data the radius obtained for the shear rates 5, 10 and 15 s�1 were
about 3.9, 2.7 and 1.8 lm, respectively. An alternative model would
be to assume that the heavy water molecules sample all the layers.
For such a case, the overall bandshape becomes Lorentzian. A fit of a
Lorentzian band shape to the data, yields radii of 2.3, 1.7 and 1.3 lm
for shear rates of 5, 10 and 15 s�1, respectively. In fact, the calcula-
tions show that the situation in the shear-induced MLVs studied
here lies between these two extreme cases. It is beyond the scope
of this paper to develop a more realistic model in which the water
molecules sample a few water layers.

In conclusion, the 2H NMR line shapes obtained show similar
features to those presented previously [43], showing that the
integrity of the onions were preserved when the samples were
tranferred to the NMR tubes, and that the diffusion experiments in-
deed were carried out on shear-induced MLVs.

5.2. PGSE NMR

The experimental PGSE NMR results are displayed in Fig. 6. In
agreement with the simulation results in Fig. 5c, the range of q
can be separated into two regions with respect to the behavior of
the PGSE signal E(q, td,d) when varying the effective diffusion time
td and the gradient pulse length d. For the origin of the different
behaviors, see the discussion of the simulation results above.

We first consider the long-time diffusion coefficients of water in
the MLV systems D1. These can, as noted above, be obtained from
the echo intensities at low q-values. Using the initial decay (E val-
ues of 0.9–1, generally the first five to ten data points), the ob-
tained value for D1 was 1.7 ± 0.06 � 10�10 m2 s�1, for all samples
and diffusion times. Since there is no dependence of D1 on the dif-
fusion times, the long-time limit has been reached. We note that
the long-range diffusion coefficients are independent of the onion
radius.

To rationalize these findings we use the cell-model approach
put forth by Jönsson et al. [56]. Consider the system depicted in
Fig. 7. It consists of a sphere embedded in a different medium.
The volume fraction of the enclosed central region is U. Di and Ci

denote the diffusion coefficient and concentration of molecules,
respectively, in region i. The effective (or long-time) diffusion in
a system as in Fig. 7 is given by:

D1 ¼ D2
1

1� 1� C1
C2

� �
U

1� bU
1þ bU

2

ð25Þ

where b is given by:

b ¼ D2C2 � D1C1

D2C2 þ D1C1
2

: ð26Þ

Clearly, the effective diffusion coefficient is given by the solubilities
and the diffusion coefficients in the two regions as well as the vol-
ume fraction of each region. The model defined by Eqs. (25) and (26)
can now be extended to treat also multilamellar vesicles. This is
done by assuming that there is a central water core in the onion,
and that successive concentric shells of bilayers and water are
added step by step. First, the effective diffusion coefficient is calcu-
lated for a system with a water core surrounded by a single bilayer
(as in Fig. 7) using Eqs. (25) and (26) above. Then an effective con-
centration of water is calculated for this entire system by dividing
the total amount of water in the system by the total volume. In
the next step, the entire system with its effective values of D and
C is taken as the enclosed region 1, a layer of water is added as re-
gion 2, and the calculation is repeated to obtain D and C for this en-
larged system. The process is then repeated successively after
addition of each shell of bilayer and water, respectively. The result
of such a calculation is given in Fig. 8, with the parameter values gi-
ven in the caption.

With only a few layers the long-time diffusion depends sub-
stantially on whether the outer layer is water or a bilayer; the dif-
fusion being much faster if the outer layer is water. This result is



Fig. 8. Theoretical long-range diffusion coefficient D1 of water in an MLV system as
a function of MLV radius RMLV calculated with the cell-model approach as described
in the text. The parameters used are: C1 = 30 M, D1 = 1 � 10�9 m2 s�1, and
C2 = 20 mM, D2 = 2 � 10�9 m2 s�1. The inner water core is taken to have a radius
of 25 Å, while the bilayer thickness is 25 Å and the thickness of the water shell is
40 Å. Each circle corresponds to the addition of a layer of either water or a bilayer.
Depending on the type of the outermost layer the calculated diffusion coefficient is
either on the upper (water) or lower curve (bilayer).

Fig. 9. Experimentally determined MLV radius RMLV and homogeneous length scale
khom vs. shear rate _c. Data is taken from this study (khom from PGSE NMR s, RMLV

from 2H NMR }) and the literature (RMLV from light scattering h [23] O [24] or 2H
NMR M [43]). Errors in RMLV are typically between 10% and 25%; the scattering is
mainly due to variations in the mechanical history of the samples. Note that only
the PGSE results (s) are presented as khom whereas all other data points represent
values of RMLV. The solid line indicates a fit of khom ¼ b _ca to the khom data, yielding
a = �0.4 (see Table 1).

Table 1
Exponent a obtained from fitting khom; RMLV / _ca to
the data shown in Fig. 9.

Technique a

Light scattering [23] �1.0
Light scattering [24] �0.4
2H line shape [43] �0.4
khom �0.4
2H line shape �0.6
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expected. For instance, a system with two added layers, i.e. a water
core surrounded by a bilayer and finally a water shell, represents a
single wall vesicle with a vesicle volume fraction of 0.17 for the
parameters defined in the caption to Fig. 8. Here the diffusion coef-
ficient is only slightly reduced from the bulk value used (D1 in
Fig. 7). As the number of layers increases the water diffusion de-
pends less on whether the outer layer is water or bilayers and also
less on the total size (i.e. the number of shells added) of the onion.
This is due to the fact that the effective diffusion coefficient in the
interior (i.e. the volume surrounded by the outermost layer)
reaches a steady state, while the volume fraction of the outer layer
becomes very small. For the parameter values used to obtain the
data in Fig. 8, the diffusion coefficient calculated for a 1.5 lm onion
is 1.1 � 10�10 m2 s�1 with water as the outer layer and approxi-
mately 10 % smaller if the outer shell is a bilayer. Thus the model
calculation gives a slightly smaller value than the experimentally
obtained value of D1. Given the uncertainty in the parameter val-
ues, this is perhaps not surprising. The model does however predict
that the long-time diffusion of water is independent of the onion
size.

Returning to Fig. 6, we now consider the region of high q in
which the PGSE signal E(q, td,d) depends on d. For the shear rate
of 10 s�1, E(q, td,d) features a shoulder at q � 3.5 � 105 m�1 for
d = 20 ms and td = 118 ms as indicated by the arrow in Fig. 6b.
As previously discussed for the simulations, Bragg peaks can be ex-
pected to occur for locally ordered materials at favorable combina-
tions of td and d. The main reasons for just a small shoulder
appearing (instead of a maximum) is, apart from the choice of time
parameters, the fact that for a periodic three-dimensional array of
onions (cf, Fig. 1 or the real system) more than one characteristic
distance occurs in the direction of the measured diffusion when
all lattice vectors are projected onto this direction. Based on these
considerations we can regard the shoulder as a Bragg peak and de-
rive from it an MLV radius of about 1.5 lm for the shear rate of
10 s�1. There are a few possible reasons for the absence of a Bragg
peak at the other shear rates, apart from an inadequate choice of
time parameters. For the highest shear rate, 15 s�1, the MLVs are
probably too small to observe a maximum within the q-range used
in these experiments. For the lowest shear rate, 5 s�1, the missing
maximum could be caused by a less ideal structure, for example,
polydisperse MLVs or an incomplete transformation of planar
lamellae into MLVs at this low shear rate.
While the Bragg peak can be expected to occur only in very
favorable circumstances, a clear dependence of the size of the
MLVs on shear-rate can be inferred from the more easily estimated
khom, as shown with vertical lines in Fig. 6. For the high shear rate
khom is 7.7 lm, for the intermediate shear rate it is 8.3 lm and for
the low shear rate it is 12 lm. With increasing shear rate, khom is
decreasing in agreement with the 2H NMR results and previous
observations [2,23,40].

The shoulder in Fig. 6b is located at q � 3/khom. As previously
verified by simulations [37], khom is directly proportional to the
length of the periodicity of a microheterogeneous medium. Based
on the data in Fig. 6, we assume a ratio of 3 between khom and the
vesicle diameter 2RMLV. Hence we can estimate the RMLV from khom

even if no Bragg peak can be observed. Such a procedure yields
RMLV = 1.4, 1.5, and 2.0 lm for the shear rates of 15, 10, and 5 s�1.

A comparison between literature data and our estimate of khom

is made in Fig. 9. As expected, khom is consistently larger than RMLV

and follows the same trend when varying the shear rate _c. Accord-
ing to theory, RMLV depends on _c as RMLV / _c�0:5[3]. As can be seen
in Table 1, keeping in mind the limited number of data points, khom

determined with PGSE NMR follows the expected relation to the
same extent as light scattering and 2H NMR lineshape analysis.
6. Conclusions

In this paper we have for nonionic surfactant MLV systems pro-
duced at different shear rates applied a recent PGSE NMR protocol
for determining the homogeneous length scale khom. Brownian
dynamics simulations showed that the PGSE NMR Bragg peak ob-
served for a well-ordered MLV system is related to the center-to-
center distance between adjacent MLVs. Comparison with literature
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data and theory indicated that khom displays the expected scaling
behavior with respect to the shear rate of formation. We anticipate
khom to become a useful, model-independent measure of the struc-
tural length scale of microheterogeneous media in general, espe-
cially so for systems not displaying PGSE NMR or small-angle light
scattering Bragg peaks due to less well developed micrometer-scale
order.
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